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Abstract. A complete set of square-integrable basis functions is used to find the matrix
elements of the rotated model Hamiltonian in which the reference Hamiltonian is fully taken
into account while the interchannel potential is approximated by its representation in the finite
subset of the complete basis. Since the spectrum of the model Hamiltonian satisfies the Aguilar—
Balslev—Combes theorem, the only discrete eigenvalues of the complex-scaled Hamiltonian are
the system’s bound states and complex resonance energies. We propose an efficient method to
locate these resonance energies and show that they converge faster than the eigenvalues of the
complex-scaled Hamiltonian using a finite basis, while being less sensitive to the variation of
the rotation angle.

The complex-scaling method has been one of the most successful methods for studying
resonances. Its basis is rigorously supported by the Aguilar—Balslev—Combes (ABC)
theorem [1,2]. Given a dilation analytic potential, one transforms the Hamiltonian
H = Hy+ V into what is termed a complex-scaled Hamiltonialp = U(@)HU (),
whereU (6) acts on any functiory (r) as

U®) f(r)=6e"2f@re”). 1

The ABC theorem in essence states that the bound statésrefnain unchanged even after
transformation while the continuous spectrum is rotated by an anglé.of I2e significant
implication of the ABC theorem is that the complex resonance energy E, — il'/2
(' > 0) will be an isolated eigenvalue of the Hamiltonial,, provided it is exposed by
rotation; i.e.f > 6. where the critical anglé. = | arge,|/2.

The most practical implementation of the complex-scaling method is by utilizing a finite
set of square-integrable ba$l$>n>},’:’:‘01 to construct anv x N matrix representation aoffy.
This construction is accomplished either by calculating the quan(i([q'éa,$H9|¢m)}fZ*1:O or

alternatively the matrix elemen‘{$¢2|H|¢§1)},’1‘f;1:0, where the complex basis is given by
|p?) = U~1(0)|¢,). This last alternative method has the advantage of dealing easily with
non-analytic potentials such as the square well [3]. The question of convergence of the
computed resonance energy @sand N vary is not as straightforward for the complex-
scaled Hamiltonian as it is for the non-rotated self-adjoint Hamiltonian due to the lack of a

bounding principle, similar to the Hylleraas—Undheim theorem, to impose on the computed
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eigenvalues [4]. Nonetheless, several empirical techniques have been used to suggest when
the choices of parameters are optimum [5-7]. An important point to note in the use of
the complex-scaling method is that the ABC theorem is a statement about the Hamiltonian
operator, Hy, while actual implementation of the method deals wiih, the finite matrix
representation of,. The only discrete energy eigenvalues of the operatft, are the
system bound states and the exposed complex resonance energies, while the spectrum of
H, is totally discrete. The set of discrete complex energieglpfmimicking the rotated
continuum ofH, does not exactly lie on the line of the rotated continuum except in the limit
of high matrix size,N [6]. While this causes little confusion in identifying the resonance
energy, the use of a complete set of basis functions that fully accounts for the reference
Hamiltonian, Hy, leads to a truly rotated continuous spectrum while the discrete spectrum
is then limited to the system bound states and resonance energies.
In this paper, we show that the-matrix method [8, 9] of scattering provides a setting
for the rigorous application of the ABC theorem. The method utilizes a complete square-
integrable basis which renders the representation of the reference Hamiltonian,
12 ¢+
Ho= 2 dr? + 2r2
tridiagonal. The given short-range potentidl, is replaced by a model whose matrix
elements are defined as

)

<¢n|vl¢m> O0<n,m<N-1

@ulViom) = 0 otherwise. ®)

In fact, V is the approximate potential considered in the usual complex-scaling method,
which also subjects the reference Hamiltoniai, to the same approximation. Additionally,
the use of the complete basis simply means that the part of the reference Hamiltonian that is
left out in the usual finite basis calculation is now accounted for. Thus, the location of the
resonance will be more accurate although not substantially modified. This means that we
may use the approximate location of the resonance, as given by the finite basis calculation,
as a seed to an appropriate search scheme for the resonance associated with the complete
basis calculation.

It is convenient to define such a search scheme by usind-atrix method set up in
the orthonormal oscillator basigp, )} , where

(Flen) = G (r) = a, Or) e P 2LE12(32)2) @)

Here, 1 is a free scale parametdt, (x) are the generalized Laguerre polynomials of order
n, anda, = /2xn!/T(n + £ + 3/2) to ensure orthonormality; i.e.

The model potentialy, may now be written in the form
V=PVP (6)

where the projection operatop, is given by

N-1
P =" 1¢u)(dnl. 7
n=0

Unlike the usual complex-scaling method which also models the reference Hamiltéfian,
as Hy, we now consider it in its entirety.
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In fact, we are able [9, 10] to find a sine-like eigenvector fyr
1S(e)) = iosn@)m) (8)
and also an asymptoti:ally cosine-like eigenvector
IC(e)) = i)cn(S)lcbn) 9)

with known coefficients,, ¢,}>° ;. Details have already been given elsewhere [11, 12].

We now proceed by considering the poles of enatrix in the second sheet of the
complex energy plane as the definition of resonances. Equivalently, the complex resonance
energy is the zero of the Fredholm determinant’ (¢), where

D (e) = det1 + GP (e)V) (10)

and Go(e) = (Ho — &)~%. By utilizing the form of the potential/ given by equation (6),
we find that the determinant has the simpler form

D (e) = detlpp + (GS) pp () Vpp) (11)
whereApp = PAP for an operatorA. This form can be evaluategkactly In fact with
J () = (Hy — &), we may write

Jrp(Go)ppr + Jpo(Go)opr = 1pp

Jor(Go)pp + Joo(Go)op =0 (12)

whereQ = 1 — P. SinceJ has a tridiagonal matrix representation in the bagbs)}>° .
it is not hard to show that

(G5 pp =[Jpp — ldn-1)Iv-anZn Iy N1 (pn-1l] " (13)
whereZ = (Jgo) t and Jy_1n = (dn-1|J|¢n). Thus, we may write
detJ + V)pp detdpp — Y5H)

detrr  detlpr — (Y5™)pp)

DM (e) = (14)

where Yt = gpplon_1)In-1nZywIn v—1(dn—1] With gpp = [Jpp + Vpp]~t. Also
(Yé“)pp is the potential-free version df,(jl;) with the correspondena@o)pp = (Jpp)~ .

Several points can be made regarding the above expressidnfofe).

(1) Because it is a determinant, it can be evaluated in any basis including the complex
rotated basis. Of course, we have to be careful to identify the domain of validity of the
resulting determinant in the complex energy plane.

(2) The quantity d€t/pp + Vpp) and detJpp) are the finite productﬂf"zgl(s,- —¢)
and ]'[f\’:’ol((eo),» — ¢), respectively, wherq;si}f":gl is the set of the eigenvalues of the finite
Hamiltonian matrix,H, and{(s0);} 5" is the set of eigenvalues @, in the chosen basis.

(3) The finite matricesg and go, are the inverse off{ — ¢) and (Hy — ¢) in the same
basis, respectively. Thus they have poles at corresponding eigenvalé&sied Ho.

(4) The denominator of the above expression for the Fredholm determifaht) is
a product of two quantities, one having zeros{(at)),-}f\':‘o1 and the other having poles at
the same points coming frogy. The overall result is that the denominator does not vanish
at {(eo),-}fv:},l. Furthermore, it is a smooth function of energy except for the branch cut
associated withZ. This is the same branch cut associated with and becomes rotated
when a complex-scaled basis is used.
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(5) The numerator of the above expression does not have zeros at the set of energy
points{e,-}f"zgl, for an analogous reason as in the previous point.

However, it has a zero at the complex energies where
detlpp — YSH) = 0. (15)

These energies are the system’s bound states and resonance energies. Equation (15) also
provides a computational tool to define our search scheme for the complex resonance
energies. In fact, the operator,p(d— Ypp), has a simpleV x N matrix representation in

the finite basig|¢,1)}’;;(1): it has a non-trivial last column but otherwise has unity along the
diagonal. Thus

detdlpp — Ypp) = {1 — gv an-1Iv-anZNnIn N1} (16)
Furthermore, we have shown previously [13] that 1 v Z\y = —RY~ where
+ iSN
R — < v Tl ) ) 17
N CN-1+Isy-1 an

Thus the resonances are the complex energies satisfying
[1+ gnv-1nv-1/n-18RS] =0 (18)

in the second sheet of the complex energy plane. This equation can be solved using the
very fast Newton—Raphson search technique starting with the approximate resonance given
by the finite basis calculation as a seed.

The generalization to multi-channel scattering is straightforward. We consider the
scattering of structureless spinless particles from a target Miihternal states labelled by
the channel threshold energis, E,, ..., E,. We associate with each channel a complete
set of basig|¢{*)}°°, with an associated scale parameter, which may be different for
each channel. The projection operatBg, is defined as in equation (7) for each channel in
terms of the channel basis. We model the given physical poteitf4l, by the potential,
VeP as

VP = P,V Py (19)

The multi-channel Fredholm determinant can be defined in an analogous manner to the one-
channel potential case. The condition for the resonance equation (15) is the same, while its
explicit form is a generalization of equation (18), namely,

1,1 @) (+) 1,2 (2 (+)
1+ g8 v—1v—1m Ry 8N Np—1No—1 o R,
21 @ +) (2,2 (2 (+)
det 8ns—1N—1d N -1 Ry, 1+ 8w 0 n-1 -1 0 RN,
(M,1) @ +) (M,2) 2 (+)
8Ny 1N—1 N -1 v By 8Ny 1. N—1INo—1. 8, RN,
(1,N) (M) (+)
8N N1 Ny =18y By
@M) o) R
No—1 Ny—1YNy—1,Ny "Ny =0 (20)

(M, M) (M) (+)
1+ ¢n, “1ny—1Iny—1.ny By,

Here,J@ = Ho — (E — E,) and Ry = ((c}y) +isy))/ ()1 +isy’_1) andg@# is the
(a, B) submatrix of the finite matrix(H — ¢)~%. The Newton—-Raphson search technique
can also be used to find the resonance energy as the solution of equation (20).
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We have applied the method to the two-channel potential problem

Vaﬁ — V(;YﬂrZe—r

aff —10 —75

Voo = <—7.5 75 ) (1)
which has recently been used in the literature [14]. This potential possesses many
resonances. We choose to focus our attention on the one locatee:at2412— i0.7559,
where the critical angl®. = 0.052 rad. In tables 1-3 we compare the behaviour of the
position of the resonance, as given by complex scaling with finite and complete oscillator
bases, in terms of the relevant parameters, namely the rotation antile,scale parameter,
A, and the size of the potential matrix siz€, In table 1 we see that complex scaling with
a complete basis gives an accurate value of the resonance energy as gdogxcasds the
critical value, 6., while complex scaling with a finite basis requirégo be distinctively
larger thart, before yielding comparably accurate results. Even whifar away fromy,
table 2 shows complex scaling with a complete basis is less sensitive to the choice of scale
parameterj, while the range ok giving accurate values is narrower for the finite basis. In
table 3, we find that complex scaling with a complete basis converges faster than complex
scaling with a finite basis as a function of the potential matrix siZe,The difference is
more pronounced wheth = 0.1 rad, which is closer té. than the choic® = 0.2 rad.

where

Table 1. The resonance energy= E; — iI'/2 for the potential (21) using a complex-scaled
oscillator basis with free scale parameter= 1.0 and N = 30, and different rotation angles
obtained by using both finite and complete bases.

Finite basis Complete basis

0 (rad) E; r/2 E; r/2

0.055 6.9652 05028 7.2794 0.7975
0.06 6.9742 0.5462 7.2619 0.7846
0.07 6.9984 0.6312 7.2487 0.7687
0.08 7.0345 0.7123 7.2443 0.7617
0.09 7.0922 0.7853 7.2426 0.7586
0.10 7.1870 0.8129 7.2419 0.7572
0.12 7.2352 0.7658 7.2414 0.7562
0.14 7.2399 0.7578 7.2413 0.7560
0.16 7.2409 0.7563 7.2413 0.7560
0.18 7.2412 0.7560 7.2412 0.7560
0.20 7.2412 0.7560 7.2412 0.7560
0.25 7.2412 0.7560 7.2412 0.7560
0.30 7.2412 0.7559 7.2412 0.7559

To understand the above behaviour, we note that using a complex-scaled basis as given
by equation (4) is equivalent to using the basis with complex scale parametee.
1 — |A|€’. This means that the basis diffuseness is controlled by the paramétécos @,
rather thari1| alone. Thus, for a giveR, 6 and N the finite basis has to represent well the
short-range potential, especially within its range, and also the reference Hamiltéfjan,
whose influence extends far beyond the limit range of the potential. For the complete basis,
the parameterg, 6 and N have to permit the firsiv members of the basis to represent
well the potential. The rest of the complete basis is able to repréégflly, regardless
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Table 2. The resonance energy= E; — iI'/2 for the potential (21) using a complex-scaled
oscillator basis withV = 30, rotation angle = 0.2 rad, and different free scale parameters
obtained by using both finite and complete bases.

Finite basis Complete basis

r E r/2 E; r/2

0.6 7.2429 0.7546 7.2414 0.7559
0.7 7.2416 0.7557 7.2414 0.7559
0.8 7.2414 0.7559 7.2414 0.7559
1.0 7.2412 0.7560 7.2412 0.7560
12 7.2411 0.7559 7.2412 0.7560
14 7.2417 0.7561 7.2412 0.7560
16 7.2420 0.7574 7.2412 0.7560
1.8 7.2458 0.7567 7.2413 0.7560
20 7.2376 0.7458 7.2414 0.7554
2.2 7.2482 0.7809 7.2403 0.7576
24 7.2149 0.7242 7.2407 0.7510
26 73024 0.7232 7.2523 0.7595

Table 3. The resonance energy= E; — iI'/2 for the potential (21) using a complex-scaled
oscillator basis with free scale parametes 1.0 and rotation angle8 = 0.1 and 0.2 rad, and
different basis size obtained by using both finite and complete bases.

Finite basis Complete basis
f(rad) N E; (r/2) E; (r/2)
0.1 10 7.3065 0.5635 7.2819 0.6991

20 7.2445 0.6783 7.2385 0.7528
30 7.1870 0.8129 7.2419 0.7572
40 7.2388 0.7914 7.2416 0.7562
50 7.2254 0.7588 7.2411 0.7562
60 7.2445 0.7480 7.2411 0.7559
70 7.2387 0.7617 7.2412 0.7560
80 7.2444 0.7540 7.2412 0.7560

0.2 5 7.1720 0.6827 7.2459 0.7906
10 7.2520 0.7467 7.2454 0.7495
15 7.2409 0.7568 7.2409 0.7560
20 7.2413 0.7558 7.2412  0.7560
25 7.2412 0.7559 7.2412 0.7560
30 7.2412 0.7560 7.2412 0.7559

of the parameters and 6. Thus complex scaling with a complete basis is less sensitive to
the parameters and 6, and converges faster in the parameter

The method outlined above may also be set up in terms of the non-orthogonal Laguerre
basis

G (r) = by (Ar) e PL2H2 () (22)

with b, = /An!/T(n + 20 + 2).

The matrix representation of the kinetic operator of equation (2) is tridiagonal in this
basis [9, 10]. Furthermore, the overlap mattix |¢,,) is itself tridiagonal. What is also of
interest, is the fact that the matrix element of the Coulomb terfn)(is actually diagonal
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in this basis [9, 10]. The above facts give the non-orthogonal Laguerre basis the advantage
over the orthogonal oscillator basis of equation (4) of being able to account fully for the
kinetic energy operator plus the Coulomb tergy,). In the case of scattering of a charged
projectile off a charged target, the Hamiltonian contains a Coulomb term and an additional
short-range potential. In this case, the reference Hamiltotfgngontains, in addition to the
kinetic energy term of equation (2), the Coulomb terny,r}. This reference Hamiltonian
can be solvecexactly in the non-orthogonal Laguerre basis. The additional short-range
potential is approximated as in the scheme described in equation (6). Of chuyrsey,
and Rfvt) for each channel are to be calculated in the above Laguerre basis.

As an example, we again consider the potential (21) with= —1.0 and +1.0.
Here we focus our attention on the resonances locateg at 6.3861— i0.3517 and
6.2780-i1.843F —2 for z = —1.0 and+1.0, respectively. Table 4 shows that the conclusion
reached in the oscillator case regarding convergence is also valid in the Laguerre case.

Table 4. The resonance energy= E, — i['/2 for the potential (21) for the cases= +1.0,
using a complex-scaled Laguerre basis with free scale paramete3.0 and rotation angle
6 = 0.1 rad, and different basis size obtained by using finite and complete bases.

Finite basis Complete basis
z N E r/2) E r/2)
-10 10 6.6126 0.3134 6.3484 0.4163
20 6.2961 0.4906 6.3766 0.3511
30 6.4188 0.3513 6.3867 0.3539
40 6.3788 0.3429 6.3862 0.3511
50 6.3886 0.3553 6.3861 0.3517
60 6.3855 0.3502 6.3861 0.3516

+10 10 6.2749 279x102 6.2750 1814x 102
20 6.2767 1806x 1072 6.2780 1830x 1072
30 6.2778 1872x 102 6.2780 1843 x 102
40 6.2781 1844x 102 6.2780 1844x 102
50 6.2780 1842x 1072 6.2780 1843x 1072
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